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Executive Summary 
 
The long-range goal of this 1-year SERDP Exploratory Development (SEED) project was to 
create an improved real-time, high-energy military impulse noise monitoring system that can 
detect events with peak levels (Lpk) as low as 100 dB with a high degree of accuracy and post the 
results in readily usable format.  Toward this goal, this phase of the project was concerned with 
field data collection of noise measurements to support algorithm development, processing of the 
signals with software to extract standard signal metrics, development of new metrics that would 
improve classification accuracy, and the development, training and evaluation of an artificial 
neural network (ANN) that used the signal metrics to determine whether a particular noise source 
was military impulse noise or not.  Current noise monitors suffer from inaccuracies since they 
look for a particular shape in the noise waveform, which can be highly variable.  It is reported 
that detection of signals with Lpk below 115 dB is difficult or impossible and that false positives 
(as high as 10%) can occur (primarily from wind triggers) [SERDP, 2003]. 
 
Data collection trips were conducted to the US Marine Corps Base Camp Lejeune (MCBCL), 
NC (military and wind noise sources), Fort Indiantown Gap (FTIG), PA (military and wind noise 
sources), central Ohio (wind noise source) and suburban Pittsburgh (wind noise source).  These 
data collection trips yielded approximately 1,000 usable waveforms (330 military impulse and 
670 non-impulse events).  A custom data collection system was assembled from various pieces 
of hardware and software to permit the collection of intermittent (impulse) or continuous (wind) 
sampling of signals.  The data collected by this system was subsequently processed by an code 
developed at the University of Pittsburgh to extract the scalar metrics of equivalent sound level 
(Leq), 8-hr equivalent sound level (L8eq), Lpk,  sound exposure level (SEL), kurtosis (Kurt), crest 
factor (CF), number of positive samples (Pos), number of negative samples (Neg), and duration 
(Dur).  Power spectral density (PSD) was also computed.  These metrics were examined for each 
type of noise source and Kurt and CF were found to be the only metrics which were good at 
discerning between impulse and non-impulse noises, since they are inherently good indicators of 
impulsivity.  Two new metrics, spectral slope (m) and weighted-square error (WSE), were 
developed to capitalize on frequency domain differences between wind noise, impulse noise, and 
aircraft noise.  Both metrics were based on the linear regression of a linear fit function for the 
PSD in the 2.5-100 Hz bandwidth.  The metric, m, was determined from the PSD plotted on log-
log axes.  WSE measures the deviation of the PSD from a linear fit function, but is based upon 
PSD that has first been normalized.  It was found that the two new metrics worked very well to 
complement the Kurt and CF time domain metrics.  The final ANN structure achieved 100% 
accuracy on the training set of data and 99.6% accuracy on the evaluation set of data (but 
effectively considered 100% accurate, since the one false negative involved a distant blast 
(Lpk=92 dB) with high foreground noise).   
 
Future work should address expanding the noise measurement library, determining the required 
hardware fidelity for the ANN approach, investigating alternate algorithms, creating a real-time 
implementation of the noise classifier in the laboratory, and a working prototype of the device 
for field-testing.   
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1.0 Objectives 
 
The long-range goal of this 1-year exploratory effort was to create a noise monitoring system 
with higher accuracy at discerning between high-energy military impulse noise and other sources, 
while requiring no human intervention – in particular, develop a system that can automatically 
post results in a readily usable file format and disseminate results.  Toward this goal, the 
development of the software for such an autonomous noise classification system was proposed, 
with the following specific aims: 
 

• Create a library of noise recordings to include military impulse sounds and possible false 
positive sounds (wind, traffic, and possible wildlife interactions) to permit the off-line 
development of a new noise classifier.   

• Investigate the possibilities of using ANNs with inputs of conventional acoustic metrics. 
• If necessary, develop new metrics for use as inputs to the ANN based classifier  
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2.0 Background 
 

2.1 Overview 
 
Encroachment of civilian residences near military installations has become a significant problem 
in recent years.  Civilian noise complaints and damage claims have forced military installations 
to reschedule, curtail, or even cancel training exercises that create high levels of military impulse 
noise (i.e. artillery, demolition training).  It is well known that atmospheric conditions (e.g. wind, 
humidity, cloud cover, and temperature profiles) play a key role in propagation of noise, creating 
differences in the day-to-day noise levels experienced by surrounding communities.  Contour 
maps of average predicted or measured noise levels in and around bases prove invaluable for 
predicting the impact of training exercises on surrounding communities, though they are not 
perfect.  As such, some bases have employed noise monitoring systems around their perimeters 
in order to record the occurrences of high-energy military impulse noise events.  Lpk and 
timestamp data are typically downloaded and post-processed daily and used to ascertain noise 
complaints and damage claims.   
 
One popular system is the NoiseWatch® BLast Analysis and Monitor system (BLAM) 
developed by McQ [McQ].  It has been reported that the BLAM system suffers from an 
unacceptable degree of inaccuracy and further requires excessive human interaction.  In 
particular, complaints include false triggers from wind or other noise (>10%) and poor detection 
of blasts below 115 dB, which is the current monitoring threshold for the system.  Decreasing the 
threshold below 115 dB may exacerbate false wind triggers. 
 
 

2.2 The BLAM Algorithm 
 
The BLAM system algorithm is based on a sonic boom detection algorithm developed in the 
1970s [Whiteford, 2005].  It works by analyzing both the amplitude and the shape of the signal.  
Although a geophone is included with the BLAM monitors, they are purportedly are not 
currently used in detecting blasts [Whiteford, 2005], owing to the differences in propagation 
speed through the air and ground, and the fact that the air wave can also excite the geophone.  
These issues are reportedly under further investigation. 
 
The BLAM algorithm works quite well under idealized conditions; however actual conditions 
can be less than ideal.  In particular, propagation effects, background noise, or multiple blasts 
can produce waveforms that confuse the algorithm.  Some typical examples of such measured 
waveforms are shown in the top plots in Figures 1 and 2.  Note that the spectrums (bottom plots 
in Figures 1 and 2) are relatively similar, despite the quite different waveform shapes (and test 
conditions).  Wind gusts have also been reported to cause false positives from the BLAM 
algorithm, in particular at Fort Riley, KS, and Fort Carson, CO, [Whiteford, 2005;  SERDP, 
2003].  Despite these limitations, the BLAM is reported to generally work well for blasts with 
Lpk>119 dB, but less well when the Lpk is between 115-119 dB, and not at all for Lpk < 115 dB, 



 

(the current design threshold).  There is new interest in detecting blasts with much lower levels 
(as low as 100 dB) [Oles, 2005; Whiteford, 2005].  Although these lower levels would not be 
associated with causing damage or widespread disturbances, detecting them could at least 
corroborate noise complaints from the public, in order to validate complaints.  Studies have 
indicated that merely expressing concern as part of public outreach program can lessen 
annoyance [Schomer, 1994].  Since the temporal characteristics of the blast waveforms can vary 
considerably, new algorithms for discerning military impulse noise from other sources are 
needed. 
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plot shows PSD. 



 

 5

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

4 

2
-4 

-2 

0 

2 
Pr

es
su

re
 (P

a)
 

Time (s)

10 4 

10 0 10 1 10
2

10
3

10 -2 

10 0 

PSD

10 2 
95% conf. int.

Au
to

sp
ec

tra
l D

en
si

ty
 (d

B)
 

     LLeq=  88.4;     LLpk= 104.9;   LLSEL=  91.8;    CF=  6.70;   LL8eq=  48.8
    Kurt= 13.91;    Durtn=2199.9 ms;   1/Dur= 454.6 Hz;   Pos= 11983;     Neg= 10015

Freq (Hz)

Figure 2.  Two 81mm mortar blasts at MCBCL, NC, 3000m from source with Lpk = 115 dB.  
Top plot shows time history and bottom plot shows PSD. 



 

3.0 Data Collection 

3.1 Equipment 
 

 6

Figure 4.  Screen Shot of VI 

Since there was no off-the-self instrument or set of equipment that was suitable for collecting 
and recording very low-frequency 
impulse noise, various components were 
assembled into a custom system.  This 
system was based upon a Larson Davis 
(LD) NMS-011 Environmental Noise 
Monitoring System (See Figure 3).  The 
primary microphone was replaced with a 
Bruel & Kjaer (B&K) 4193 Infrasonic 
Microphone, which had a bandwidth of 
70 mHz to 20 kHz.  The primary 
microphone was connected via cable to 
a LD 824 Sound Level Meter (SLM).  
The LD 824 served as a field-portable 
microphone power supply that also logs 
Leq and Lpk value at one second intervals 
(for subsequent data validation steps).  
Since most of the energy of the sources 
that were measured lies in the very low-
frequency range (0-100 Hz) the 
weighting of the input spectrum was set 
to Flat (linear) Weighting; however 
post-processing can add any weighting 
desired.  The LD 824 can also apply a 
gain to the output signal.  This gain can 
be adjusted to improve the signal to 
noise (S/N) ratio in the measurements.  
The AC output of the LD 824 SLM 
was connected to a National 
Instruments (NI) DAQCard-6036E 
data acquisition card through a NI 
BNC-2110 input/output board.  
When weather permitted, a second 
channel was recorded using a LD 
2540 microphone with a B&K 5935 
power supply.  The DAQCard was 
installed into a Dell Latitude laptop 
with a Pentium IV processor.  A 
Virtual Instrument (VI) was created 
in Labview 7.1 to capture waveform 
data.  The VI enabled an “automatic 

Figure 3.  Noise recording equipment in the
 field. 



 

 7

triggering/pre-triggering mode,” where data were recorded when the signal exceeded a specified 
threshold, (used to automatically record impulse events – this corresponds to exceeding a certain 
Lpk value).  Although the threshold can be set to record at or above any desired Lpk level, it was 
typically adjusted to just above ambient noise levels in order to record as much data as possible.  
In our data collection, a 0.1-0.25 second pre-trigger was coupled with an additional 2 seconds of 
recorded data for each record.  By pre-triggering, the entire event was able to be recorded. A 
manual (continuous) triggering mode was also possible, which was used to record longer or 
continuous events such as wind, aircraft noise, traffic, and engine noise.  During multiple 
successive trigger events, the “automatic mode” also triggered nearly continuously.  A screen 
shot of the VI is shown in Figure 4.  The VI displays the current instantaneous time signal (upper 
left Fig. 4), the instantaneous spectrum of the input signal (upper right Fig. 4), a captured 
waveform obtained with the automatic triggering mode (lower left Fig. 4) and multiple 
waveforms captured using the manual triggering mode (lower right Fig. 4).  The VI also 
contained buttons to toggle between the different modes of operation.  Although most of the 
military impulse noise energy was in the very low frequency range (0-100 Hz), to provide 
maximum flexibility in the algorithm development, data were sampled at 10 kHz. 
  
 

3.2 Data Collection Procedure 
 
Military impulse noise and wind noise data were collected at MCBCL, NC, and FTIG, PA (two 
different trips).  Wind data were recorded in central Ohio and suburban Pittsburgh.  Additional 
wind data were recorded at MCBCL and FTIG. 
 
Before conducting trips to the military installations, range control officers were consulted to 
determine the best times to visit the installations (based upon extensive training exercises with a 
variety of noise sources).  The range control personnel were able to point out areas where high 
levels of noise and/or a high frequency of noise complaints would occur.  At MCBCL, 
measurements were conducted in the vicinity of the most active permanent NoiseWatch® 
BLAM stations, in order to get accurate representations of the signal that the monitors try to 
classify.  Upon arrival at a selected location a setup procedure and checklist was conducted in 
order to prepare the equipment for data collection.  At this point the location, barometric pressure, 
date, time, wind speed (if applicable), and weather conditions were recorded in the test log.  
During the data collection, a time and event history was also recorded in the test log in order to 
verify each noise source during subsequent post processing of the data.  Changes in weather 
conditions were also periodically noted. 
 
During the trips to central Ohio and suburban Pittsburgh for recording of wind noise, locations 
were selected to maximize wind velocity while minimizing background noise.  These locations 
were at the highest possible altitude, free of surrounding structures and trees and absent of other 
types of background noise.  The instrument setup was identical to that used for the measurements 
taken at the military installations, however manual (continuous) triggering was typically used. 
In all, 1000 usable wave forms have been collected, including 330 military impulse events and 
670 non-impulse events.  Military impulse noise data included 155mm Howitzers, 81mm mortars, 
60mm mortars, 60mm rockets, 40mm grenade launchers, A-10 30mm cannon strafe, M67 hand 
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grenades, and Bangalore Torpedoes (strings of 3, (27lbs HE)).  Regrettably, despite meticulous 
care and real-time signal monitoring, some of the data were corrupt due to cabling problems, and 
had to be discarded.  Therefore, some of the sources above are not represented (M67 hand 
grenade and 60 mm mortars).  Different measurement locations included the edge of bodies of 
water, flat open fields, flat wood lands, tops and bottoms of ridge lines, and thick, mountainous 
woodlands.  Since most of the data were collected during the late spring and summer, 
temperatures ranged from around 75 to 100°F.  Relative humidity levels varied from 44% to 
100% (raining).  Non-impulse (potential false positive) data included winds, aircraft (F-16, A-10, 
and C-130), traffic, and woodland noise.  Although by no means exhaustive, the current library is 
deemed adequate for the preliminary development and evaluation of the real-time noise classifier 
algorithms.  The library of records is being supplied on compact discs (CD), as it is hoped that 
they will be useful for future military studies.  All system gains and calibration constants have 
been applied so that the signals have units of Pascals.  Data were stored in ASCII format. 
 



 

4.0 Data Processing 
 

4.1 Conventional Metric Processing 
 
As was originally proposed, the data were processed to extract the acoustic metrics of Leq, L8eq, 
Lpk, SEL, Kurt, CF, Pos, Neg, and Dur.  Kurt is defined as the fourth central moment divided by 
the standard deviation to the fourth power (typically used as a measure of how “outlier-prone” 
data are): 

[ ] .1

0

4
44

4

dtp
T

pEKurt
T

∫==
σσ

      (1) 

T is the length of time over which Kurt is computed (in our case, the length of the recording) and 
σ is the standard deviation of the sampled acoustic pressure, p.  CF  is computed as 

rmsp
pCF )max(

= .        (2) 

Leq is the equivalent sound level over the recording period (approx. 2 seconds).  The Enhanced 
Sound Level Meter (ESLM) code developed at the University of Pittsburgh was used to compute 
these metrics along with the PSD of each waveform (NFFT = 4096 points, overlap=50%, 
window=Hanning).  Figure 5 shows the output of an example waveform processed by the ESLM 
code, where the upper plot displays the captured time history and the bottom plot depicts the 
PSD of the waveform.  The scalar metrics for this particular event are displayed below the plots, 
just above the caption.  These values were also exported to text files, which in turn served as the 
input to the ANN algorithm.  The computed metrics for all of the collected waveforms have been 
supplied in the Excel file:  ESLM_Signal_Metric_Outputs.xls, which is provided on the DVD as 
well as an attachment to this report (see Appendix A). 
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Figure 5.  Typical 81mm Mortar blast measured at FITG, PA at a distance of 2 km 
(Lpk = 110 dB). 

 
 
Once all the waveforms had been processed, the results were analyzed to see if particular metrics 
appear to be better at discriminating between military and other sources of noise.  A plot of the 
more useful metrics (ordinate) for the 1000 collected waveforms (abscissa) is given in Figure 6.  
The first 670 points represent recordings of nonmilitary impulse noise and the remaining 330 
points represent military impulse events.  When comparing the two groups of data, the metrics 
were found to be similar, with the exception of Kurt and CF.  These two metrics have been used 
in the past for characterizing impulsive type sounds [Henderson, 1986; Hamernick, et al., 1993; 
Vipperman, et al., 2003].  It was expected that these two metrics would be the most useful for 
noise classification. 
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Figure 6.  Plot of Acoustic Metrics for each Waveform 
  

4.2 Preliminary ANN  
 
An ANN is an interconnected assembly of simple processing elements called units or nodes, 
whose functionality is loosely based on the animal brain [Kosko, 1992].  The processing ability 
of the network is stored in the inter-unit connection strengths, or weights, obtained by a process 
of adaptation to, or learning from, a set of training patterns.  Multiple ANN structures were 
examined, the first of which is shown in Figure 7. This network simply takes all of the scalar 
signal metrics computed by the ESLM code as inputs and tries to determine whether the 
waveform was military impulse noise or not (single binary output).  The hidden layer adds 
complexity to the network, which typically improves performance.  The use of multiple hidden 
layers of various sizes was investigated, but no improvement was gained.  As is typical, the ANN 
complexity was usually increased until no further benefit was derived.  The ANN was trained 
using the Levenberg-Marquardt algorithm [Kermani 2005].   
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The data were randomly divided into two parts: 2/3 were used for training purposes and the 
remaining 1/3 was used for evaluation.  Initially, the data recorded at MCBCL were used, since 
no other data were available at the time.  An accuracy of 96% was achieved during the validation 
phase.  When new data were subsequently collected from FTIG and used to validate the classifier, 
an accuracy of only 92% was achieved (with no new training – some improvements would be 
expected if the network were also trained on the FTIG data, which had different characteristics 
due to the topological differences).   
 
The results indicated that the ANN-based algorithm had potential to distinguish between military 
impulse noise from other noise sources, although there was still sufficient room for improvement 
in the algorithm.  Specifically, improvements in accuracy were sought by decreasing the 
dependence upon the temporal shape of the waveform as well as the overall magnitude (Lpk 
value).  The next section will describe new metrics that were developed to achieve these goals. 
 
 

4.3 New Scalar Metrics for Use as ANN Inputs 
 
Analyzing the PSD of a waveform was an attractive option, since the factors such as location, 
weather, terrain, number of events, multi-path propagation and timing of the events can strongly 
affect the temporal characteristics of a waveform.  When comparing PSDs of the many different 
waveforms of military impulse and non-impulse noise records, some commonalities become 
apparent.  First, most of the energy of the signals that have been analyzed usually lies within the 
0-100 Hz bandwidth (as expected).  Also the shapes of PSD curves between 0-100 Hz, for 
similar sources, usually had similar features.  The three main noise types to be considered here 
were wind noise, military impulse noise, and aircraft noise. 
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Figure 7.  Topology of First ANN Structure. 



 

Figure 8 shows a typical PSD plot for a wind noise record.  A classic von Karmon–type spectrum 
[Blevins, 2001] was observed.  That is, when wind PSD was plotted on log-log axes, the energy 
was predominately low frequency and has a linearly decreasing trend.  An increase or decrease 
of velocity will shift the PSD curve to the right or left, respectively, with little change to the 
actual trend.  Note that a linear regression with a linear fit function performed on the PSD 
between 2-100 Hz would be expected to have relatively little error. 
 
 

Slope,, m

Bandwidth of 
Interest 

 

Figure 8.  Typical PSD plot of wind noise 
 

 
Figures 9 through 11 shows some typical PSD plots of military impulse noise sources (81mm 
mortar, Bangalore torpedo, and 155mm Howitzer, respectively).  When comparing these figures, 
within the bandwidth of interest, it becomes apparent that these curves were very different in 
structure from the wind PSD, yet have features in common with themselves.  For example, each 
of the curves begin with an increasing slope (up to 10-20 Hz), become level (between 10-50 Hz), 
and transition to a negative slope (20-100 Hz). These curves were not well represented by a 
linear trend, as with the wind noise. 
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Figure 9.  Typical Plot of PSD of 81mm Mortar  
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Figure 10.  Typical Plot of PSD of Bangalore Torpedo  
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Figure 11.  Typical Plot of PSD of 155mm Howitzer 
 

 
The PSD plot of typical aircraft noise is shown in Figure 12, where it is seen that the signal 
energy often has a much wider bandwidth (0-2,000 Hz) than the impulse noise.  The overall 
slope of the PSD curve within the bandwidth of interest (0-100 Hz) was closer to “flat” (zero 
slope) than that of military impulse noise or wind noise. 
 

Bandwidth of 
Interest

Figure 12.  Typical Plot of PSD of F-16 Flying Over 
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With these commonalities identified, it now became possible to develop frequency-domain 
metrics that encompassed these generalizations. 
 
 

4.4 Development of New Metrics for Input to ANN Structure 
 
Two new metrics were created to take advantage of the observed differences in PSDs – the m 
and the WSE.  Both metrics were scalar and apply to the 2.5-100 Hz bandwidth of the PSD.  
Scalars were desirable as inputs to the ANN, since they keep the complexity down.  The metrics 
have been combined with Kurt and CF, which were described in section 4.1, and found to be 
good indicators of the impulsiveness of the noise.  Although they were time-domain algorithms, 
they were inherently not as strongly dependent upon detecting a waveform with a particular 
shape, as with the BLAM algorithm.   
 

 4.4.1 m 
 
m was computed by creating a least-squares fit to a line, ŷ = mx + b, where ŷ =log10(PSD) was 
the base-10 logarithm of the PSD and x = log10(f) is the base-10 logarithm of frequency.  The fit 
was conducted over the frequency bins between 2.5 and 100 Hz.  Although the impulse noise 
sources were poorly characterized by a linear trend, the slope was still useful for differentiating 
from other types of noise, as will be illustrated later. 
 

4.4.2 WSE 
 
The “goodness” of the fit was assessed with the WSE, which was computed as 
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where yi was based upon the log10(PSDi) of the ith frequency bin, which was given by equation (4) 
(below), ŷi  was the estimate of yi from the linear curve fit, and fi was the ith frequency.  Squaring 
the quantity [  allowed WSE to remain positive to reflect the total magnitude of the error.  
The term [  served to add greater weight to the difference between y from ŷ at the lower 
frequency bins.  This was done because the best features for identifying military impulse noise 
from non-impulse noise occur at the lower reaches of the bandwidth of interest.  There were 42 
frequency bins from 2.5-100Hz for the given spectral resolution, and the WSE was computed 
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logarithmic PSD terms, y

ii yy ˆ−

ii ff −+1

i, were normalized to have a value between 0 and 1, which correspond 
to the minimum and maximum values of log10(PSD), respectively.  Thus, yi was computed as 

( ) ( )
( ) ( ))min(log)max(log

)min(loglog

1010

1010

PSDPSD
PSDPSD

y i
i −

−
=      (4) 

 
 



 

4.5 Explanation of New Metrics 
 
The next set of figures will illustrate the utility of the WSE and slope metrics in classifying the 
encountered types of noise sources.  When they were applied to wind noise, as in the case of the 
record presented in Figure 8, the resulting slope is m = −4.29 and WSE = 0.0093.  Figure 13 
shows normalized data and curve-fit results in the region of interest, where the x-axis represents 
log10 (frequency (Hz)) across the 2.5−100 Hz band.  The WSE of 0.0093 was relatively small 
because the linear approximation was quite good for wind noise.  It is important to note that the 
green slope line shown in Figure 13 is not exactly the same thing represented by the slope metric, 
m, described above.  While Figure 13 shows the slope of the normalized PSD function, m was 
actually computed using the non-normalized values of PSD.  Both slopes were examined, but the 
one chosen provided much better signal detection abilities.  For the blast represented in Figure 13, 
the corresponding non-normalized slope was m = −4.29.  The negative value for m was a result 
of the roll-off in spectral energy with increasing frequency. 
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Next, the frequency-domain metrics were applied to military impulse noise event presented in 
Figure 9.  For this case, m = −3.36 and WSE = 0.679, with the graphical comparison between the 
data and curve fit given in Figure 14.  The slope was somewhat similar to that for the wind noise 
(25% smaller), however, the WSE was more than 70 times larger than the wind noise, as a result 
of the poor linear fit for the data. 
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Figure 13.  Plot of normalized log10(PSD) and linear curve fit versus log10(frequency) 
for wind noise (2.5-100 Hz) given in Figure 9. 
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Figure 15 shows the results for the aircraft noise record presented in Figure 12 (m = 0.326 and 
WSE =0.0642).  In contrast to the other sources, the slope of the curve was slightly positive and 
considerably smaller (factor of 10).  Whether the slope was positive or negative, it was typically 
small (relatively flat frequency response) for this type of noise.  The WSE was larger (by a factor 
of 7) than the wind noise but considerably smaller than the impulse noise (by a factor of 10).   
These results, which were summarized in Table 1, illustrate that the different noise sources 
produce distinguishable differences in the new frequency-domain metrics.  Table 2 summarizes 
the qualitative results of using m and WSE for noise classification.  The new scalar metrics were 
very amenable to being included as inputs to the ANN noise classifier. 
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Figure 14.  Plot of normalized log10(PSD) and linear curve fit versus 
log10(frequency) for an 81mm Mortar (2.5-100 Hz) given in Figure 10. 



 

Table 1.  Output of New Scalar Metrics 
 
Main Types of Noise Sources Value of  m Value of WSE 

Military Impulse -3.36 0.679 
Wind -4.29 0.0093 

Aircraft 0.326 0.0642 
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Table 2.  Summary of the Expected Output of New Scalar Metrics 
 
Main Types of Noise Sources Relative Value of m Relative Value of WSE 

Military Impulse Large Negative Large 
Wind Large Negative Small 

Aircraft Small Negative or Positive Moderate 
 

Figure 15.  Plot of normalized log10(PSD) and linear curve fit versus 
log10(frequency) for an F-16 flyover (2.5-100 Hz) given in Figure 13.
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Figure 16 shows the values for m (bottom plot) and WSE (top plot) for each of the recorded 
waveforms, similar to Figure 6 for the ESLM code outputs.  The non-impulse data given in 
Figure 16 are further divided into aircraft noise (“Section A”) and wind noise (“Section B”).  It 
was apparent that the data presented in Figure 16 agrees well with the observations given in 
Table 2, although there were a few outliers.  The most noticeable of these would be the positive 
values for m in a few of the military impulse noise records.  These waveforms corresponded to 
relatively quick events, closer to the definition of a true impulse, such as 81mm mortar launches, 
grenades, and 60mm rockets breaking the sound barrier or blasts occurring in close proximity.  
An example of such a set of events is shown in Figure 17.  Fortunately, these fast peaking events 
have comparatively large values for Kurt and CF because they peak and end quite rapidly.  The 
ANN structure was able to take into account the high values for Kurt and CF and thus produce a 
correct noise classification.  Some outlying points also occurred in the non-impulse noise records.  
These events were often wind or aircraft noise with comparatively low Lpk values.  Once again, 
the Kurt and CF values were able to correctly classify the noise the wind noise.  By the same 
token, m and WSE values complement the Kurt and CF at times.  Such a case can occur when 
multiple impulse events happen in a very short period of time, different events occur 
simultaneously, or events were not extremely loud causing Kurt (Equation 1) and CF (Equation 2) 
to be relatively smaller in size.  However, the PSD of multiple impulse events was very similar 
to single events, meaning that the m and WSE will be relatively unaffected.  Figure 18 shows the 
waveform and PSD resulting from three very distant 155mm Howitzer blasts that overlay one 
another.  In this case the metrics, Kurt and CF yield an inconclusive result but, m and WSE can 
identify the events as military impulse noise.  Thus, the two sets of metrics were shown to 
compliment one another, and improve the overall accuracy of the impulse noise identification 
system.   
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Figure 17.  Three (denoted by green arrows) 60mm Rockets fired from A-10 at 
2000m at FTIG, PA:  m = 2.49, WSE =0.155, Kurt =80.3, CF=20.0, Lpk=120 dB. 
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4.6 Revised ANN Structure 
 
Multiple structures for the ANN classifier were investigated, but the final topology was given in 
Figure 19. The four inputs were WSE, m, Kurt, and CF.  The temporal metrics of Kurt and CF 
were retained in the design because they offer the best indication of the impulsiveness of a signal.  
Three hidden layers of 4-nodes each (tan-sig squashing functions) provided the best performance 
while minimizing complexity.  This ANN structure was also trained using the Levenberg-
Marquardt algorithm [Kermani 2005].  The ANN achieved an accuracy of 100% on the training 
data and 99.6% accuracy on the test data (one incorrectly classified waveform out of 287).  The 
single incorrectly classified record was a false negative.  It should be pointed out that when this 
case was examined closely, it was determined that the waveform had an Lpk of only 92 dB (so 
distant, that it is likely not of interest) and the waveform was measured with a HMMWV idling 
in the foreground.  For practical purposes, the results are considered 100% accurate.   
 

Figure 18.  Three overlayed 155mm Howitzers recorded at from 6 to 10 
km at FTIG, PA.  
 m =−10.5, WSE =0.124, Kurt=7.80, CF=4.31, Lpk=93dB 

0 0.5 1 1.5 2
-1

-0.5

0 
0.5

1 x 3FIT w estgate 0508021646b 40db.txt              

Time (s)

Pr
es
su
re
(P

 

a)

10 0 10
1 

10
2

10
3

10
-  2

10
0 

10
2 

10
4 

Freq (Hz)

A
ut
os
pe
ctr

D
en
sit
y 
(d

LLeq =  80.3;     LLpk =  93.0;   LLSEL=  83.9;    CF=  4.31;   LL8eq=  
Kurt=  7.80;    Durtn =2249.9 ms;   1/Dur= 444.5 Hz;   Pos= 13179;     Neg =  9319 

PSD 
95% conf. int.

x155 

0 0.5 1 1.5 2
-1

-0.5

0 
0.5

 3 IT estgate 5 8 2 646b 0db.txt              x F w 0 0 0 1 4
1

Time (s)

Pr
es
su
re
(P

 

a)

10 0 10
1 

10
2

10
3

10 -2
10 0
10 2
10 4

1

0 0.5 1 1.5 2 - 1
- 0.5 

0

0.5
P

re
ss

ur
e 

(P
a)

Time (s)

10 0 10 1 10
2

10
3

10
- 2

10
0 

10
2 
4 

10
PSD

lD
en

si
ty

 (d
B

) 95% conf. 

A
ut

os
pe

ct
ra

LLeq Freq (Hz)

=  9319 =  80.3;     LLpk =  93.0;   LLSEL=  83.9;    CF=  4.31;   LL8eq=  
Kurt=  7.80;    Durtn =2249.9 ms;   1/Dur= 444.5 Hz;   Pos= 13179;     Neg



 

Input Layer

WSE

Slope

Kurt

CF

Hidden Layers

(Tansig Function)
Output (Yes or No)

(Logsig Function)

Input Layer

WSE

Slope

Kurt

CF

Hidden Layers

(Tansig Function)
Output (Yes or No)

(Logsig Function)

Figure 19.  Topology of Second ANN Structure 
 

 

 24



 

 25

5.0 Conclusions 
 
This report summarizes an effort to develop a more accurate autonomous noise classifier.  
Current monitoring systems have been reported to suffer from false positives and numerous 
unidentified events, as well as limited ability to detect military impulse events with Lpk below 
115 dB.  The specific aims of this project were to: collect a library of military impulse noise and 
signals that were known sources of potential false positives as well as to develop an ANN and 
associated algorithms necessary to classify sources as military impulse noise or not.  
Approximately 1000 usable waveforms of various sources have been collected from MCBCL, 
NC, FITG, PA, Central Ohio (wind only), and Pittsburgh, PA (wind only).  Useful military 
impulse noise recordings include 60mm rockets, 81mm mortars (firing and impact), 155mm 
Howitzer (firing and impact), 30mm Gatling gun strafe (GAU-8), 40mm grenades, and 
Bangalore Torpedoes.  Non impulse noise sources included wind, operational noise, and aircraft 
(e.g. close air support during training).  The algorithm development involved an ANN training 
phase followed by an evaluation phase.  New scalar metrics, m and WSE, have been developed 
to be used as inputs to the ANN.  Both metrics were dependent upon a linear curve fit of the 
normalized, low-frequency (<100 Hz) PSD function.  Two other time-domain metrics, Kurt and 
CF, serve as inputs to the ANN noise classifier, since they were excellent metrics for the 
“impulsiveness” of a signal.  All four metrics were less dependent upon a particular shape of the 
blast waveform, unlike the BLAM algorithm.  A single binary output from the ANN indicated 
whether a particular event is military impulse noise or not.  The final ANN structure was found 
to produce an accuracy of 99.6% (but effectively considered 100% accurate, since the one false 
negative involved a distant blast (Lpk=92 dB) with high foreground noise).  All algorithms were 
developed in MATLAB and were amenable to a real-time implementation. 
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6.0 Future Work 
 
The results of this exploratory effort were very encouraging.  It should be pointed out that 
although time signals were recorded and used for the development of the algorithms, they are not 
required for the operation of a permanent version of the monitoring system.  That is, a real time 
implementation can be created.  Interest has been expressed by USA-CHPPM and MCBCL to 
implement the new algorithms on the existing NoiseWatch® BLAM [McQ] hardware.  Toward 
this goal, some recommendations for future work include: 
 

1. Make additional noise measurements in the field to create more exhaustive noise library 
2. Retrain the ANN classifier, incorporating the above new data 
3. Investigate alternate and possibly more robust algorithms, such as Bayesian learning 

approaches 
4. Streamline the best algorithms for computational efficiency 
5. Create and test a real-time implementation of the noise classifier in the laboratory 
6. Determine the required hardware fidelity for the algorithms to work well 
7. Assess the BLAM hardware and determine whether upgrades are necessary 
8. Port the algorithms to the BLAM hardware or other field-trial hardware 
9. Perform field testing of prototype at selected military base(s) 
10. Full implementation of the technology (with McQ) 

 
Although the classifier could be trained using data specific to each base, it is more desirable to 
have a generic solution that will work for any military base.  To ensure the generality of the 
algorithms, additional data should be obtained from other locations, in particular, other 
topographies (e.g. the plains of the Midwest) and weather conditions (e.g. snowing/snow cover).  
Wind measurements at Forts Riley and Carson are also advisable, since these are the locations 
noted by USA-CHPPM as having excessive wind triggers.  If detection of sonic booms is also 
desired, they should also be measured, along with any other known sources of false positives 
(one installation reported that birds pecking at deteriorated, insect-infected windscreens have 
created triggers).  These data can then be combined with the current data set and used to retrain 
and evaluate the ANN structure.  In the event that accuracy is found to suffer with the new data, 
adjustments to the ANN structure can likely be made to address that issue. 
 
At the same time, probabilistic learning algorithms [McKay, 1992] should be studied that might 
provide better robustness, particularly across military installations.  In particular, Bayesian 
methods have proven effective in many applications of parameter estimation and spectral 
analysis [Bretthorst, 2001; Sivia, 2006] and have successfully been applied to filtering processes, 
such as discerning between legitimate and “spam” email messages with reported accuracies as 
high as 99.5% [Graham, 2003].  These target applications have goals that are similar to the noise 
classification problem. 
 
The signal metrics computed for the ANN classifier are currently based upon the ESLM code 
developed at the University of Pittsburgh, which emulates a digital SLM in accordance with 
ANSI standards S1.4, S1.11, and S1.43, including the detector circuitry (impulse, fast, or slow 
time constants), the weighting networks, and integrated metrics, such as Leq.  The code is 
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implemented in both the time and frequency domains, in accordance to whichever is most 
efficient.  Not all of the functionality of the ESLM code is necessary for a real-time classifier 
implementation.  The ESLM code is also not necessarily computationally optimized for this 
specific application, but could be.  For example, most digital signal processor (DSP) chips have 
special memory addressing modes to make computing fast Fourier transforms (FFTs) and 
implementing digital finite impulse response (FIR) or infinite impulse response (IIR) filters very 
quick.  A real-time implementation should take advantage of these modes for efficiency.  Other 
techniques, such as zoom FFT processing, can also be utilized to improve computation time.   
 
The algorithms should first be ported from MATLAB to a DSP chip in the laboratory 
environment.  The recorded waveforms can be “fed” to the real-time implementation as if they 
were just sampled in order to test the code and ensure that the behavior is identical to the off-line 
version developed in MATLAB.  This will also permit the algorithm to be streamlined to the 
extent possible.  Once this is complete, the algorithms can be ported to the NoiseWatch® BLAM 
[McQ] or other desired hardware (somewhat chip-specific), providing the equipment meets the 
requirements of the algorithm.  In particular, the bandwidth and dynamic range requirements for 
the new algorithm must be established in order to determine whether the NoiseWatch® BLAM 
[McQ] hardware should be upgraded.  Every effort will be made to utilize the existing hardware.  
However, given rapid advances in technology, upgrading to a faster and less power-intensive 
DSP chip may be an attractive option.   
 
Finally, it may be possible to expand the classification of the system from the simple “yes/no” 
categorization of detecting impulse noise or not to actually recognizing different weapon systems.  
This may be of interest to the military for recognizing friend or foe fire, for example and 
assessing complex situations in warfare, in particular urban warfare conditions. 
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Appendix A.  Supporting Data. 
 

 
All useable data (noise recordings) that were collected in the field are being supplied on a DVD 
attached to this report.  In addition, the MATLAB codes used to extract the signal metrics and 
train and test the ANN are supplied in the directory named “Matlab Codes.”  This report is in the 
“Report” directory and the summary of all signal metrics is given in 
ESLM_Signal_Metric_Outputs.xls in the directory “Data Summary.”  All waveform data in the 
form of text files are included in the directory “SERDP Library.” Since this directory organizes 
the files by category into several subdirectories, Figure 20 graphically depicts of the structure of 
the “SERDP Library.”  At the bottom of leaf of each branch, each subdirectory is further divided 
into specific days and locations of each type of noise source that was recorded. 
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Figure 21:  Directory Structure of supplied data DVD. 
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of the Acoustical Soc. of Am., Vancouver, BC Canada, May 16-20, 2005, also (abstract only)  J. 
Acoust. Soc. Am. 117, p. 2448. 

 
Vipperman, J.S. and Brian Bucci, “Development of a Real-Time Military Noise Monitor,” 
SERDP/ESTCP Partners in Environmental Technology Symposium and Workshop, Washington, 
DC, Nov. 29 – Dec. 1, 2005.  
 
Bucci, Brian, Vipperman, J. S., "Development of Artificial Neural Network Classifier to Identify 
Military Impulse Noise," 151st Meeting of the Acoustical Soc. of Am., Providence, RI, June 5-9, 
2006, accepted for presentation. 
 
 
Conference Paper: 
 
Bucci, Brian, Vipperman, J. S., “Artificial neural network military impulse noise classifier.” 
IMECE2006-14065, Proceedings of IMECE 06:  2006 ASME International Mechanical 
Engineering Congress, November 5-10, 2006, Chicago, Illinois. 
 
 
Journal Paper: 
 
Bucci, Brian, Vipperman, J. S., “Development of an artificial neural network-based classifier to 
identify military impulse noise,” In-Process.  In Process,  J. Acoust. Soc.  of Am. 
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